90% Confidence limit for $\mu_{v_{\tau}}$ using the Feldman-Cousins method

Reinhard Schwienhorst University of Minnesota

Short report E872 phone meeting, 10/19/99

Outline

- Introduction
- Statistics
 - Bayesian and Frequentist intervals
- Feldman-Cousins method
 - Likelihood ratio
 - Confidence belt
- Conclusions
- Outlook

Introduction

- At the August meeting I presented a preliminary result for $\mu_{\nu_{\tau}}$
 - 90% confidence limit
 - simple classical (frequentist) statistics
 - not appropriate for low statistics + background
- Many Physicists use "Bayesian" statistics
 - works for low statistics+background
 - requires knowledge of prior probability distribution function (pdf) of the parameter to estimate
- Feldman and Cousins have specified a method to find correct "frequentist" confidence intervals for low statistics + background

used in neutrino oscillation searches

Statistics

- Probability of observing a value x if the true value is μ_t : $P(x|\mu_t)$
- Classical statistics relies only on $P(x|\mu_t)$
 - statements about x
- Bayes theorem for two sets A and B: P(A|B) P(B) = P(B|A) P(A)
- applied to measurements: $P(\mu_t|x_0) = L(x_0|\mu_t) \ P(\mu_t) \ / \ P(x_0)$
 - result of a specific experiment: x₀
 - L $(x_0|\mu_t)$: likelihood function, =P $(x_0|\mu_t)$
 - $P(\mu_t)$: prior pdf, needs to be specified
- This is Bayesian statistics
 - statements about μ_t

Bayesian and Frequentist statements

- Statement about the value x_0 observed in a single measurement and the true value μ_t and a 90% confidence interval
- Frequentist (classical): If I repeat the experiment many times (and create many confidence intervals), the true value μ_t will lie inside the classical interval 90% of the time.
- Bayesian:

If I observe x_0 in a single experiment, 90% of the possible values for μ_t lie inside the Bayesian interval.

Feldman-Cousins method

- Problem region: small number of observed events with background
- Frequentist method
- ordering principle to treat the low statistics region properly
 - order based on likelihood ratio
 - increase the interval until the probability sum is ≥90%

Likelihood ratio

• For each possible signal mean μ_s , calculate the possible number of events

$$n_{sum} = n_s + n_{bg}$$
 (signal + background)

- Also calculate the probability of the "best" distribution $\mu_{best} = n_{sum} n_{bg} \quad (and \ require \ \mu_{best} \ge 0)$
- The likelihood ratio is

$$R = \frac{P(n_{\text{sum}}, \mu_s)}{P(n_{\text{sum}}, \mu_{\text{best}})}$$

• Extend the n_s interval in decreasing R order until

$$\sum_{n_s} P(n_{\text{sum}}, \mu_s) > 0.9$$

Poisson distribution and ratio R

* : Poisson distribution, μ =3

▲ : distribution of the "best" value

: ratio R

Confidence belt

- Calculate an acceptance interval for many values μ_s
- Make a graph of the acceptance intervals versus μ_s
- example: magnetic moment $\mu_{v_{\tau}}$
 - background n_{bg}=4 events,
 - observed n_0 =3 events
 - for each possible value $\mu_{v_{\tau}}$, create a 90% acceptance interval of observed events

Confidence belt

- A horizontal line corresponds to a 90% acceptance interval
 - actually ≥90% due to discreteness
 - created without prior knowledge of the result
- A vertical line corresponds to a 90% confidence interval

-90% confidence limit for $\mu_{\nu_{\tau}}: 2\times10^{-7}\mu_{B}$

Conclusions

- The Feldman-Cousins method is widely used in neutrino physics
 - Frequentist approach
 - It deals properly with small numbers
 - It does not yet allow for uncertainty in flux or background
 - usually the statistical error dominates
 - systematic error can safely be ignored up to $\approx 30\%$

Outlook

- I will use the Feldman-Cousins method to compute a 90% upper confidence limit on $\mu_{\nu_{\tau}}$
- I will also quote the observed number of events and the expected number of background events

